
A paper for the 25th Biennial Conference of ICKL, 2007

Gábor Misi
An algebraic representation of Labanotation for retrieval and other operations

Introduction

Computer applications for Kinetography Laban/Labanotation are mostly simple graphic editors
and generally do not contain search facilities. The first experimental software for retrieval was
DanceStruct (Fügedi, 1995), developed at the Institute for Musicology of the Hungarian Academy of
Sciences. The next generation application in Hungary is Labanatory (Misi, 2002); its latest version has
the capability to search for almost all Labanotation signs or sign groups in a score, and its retrieval
function is unique (Calvert–Wilke–Ryman–Fox, 2005).
The development of these systems was inspired by the need to support analyses of Central
European traditional dances, based on the assumption that recurring movements correspond to
repeating patterns in Labanotation, since similar movements are indicated in a similar way. This
means that dance elements can be found with pattern matching in a purely formal way (Misi, 2005;

Misi, 2006). These searches can be performed in any dance style in which movement repetitions exist.
Searches are useful for spell-checking scores or checking the uniformity of sign usage.
To implement a retrieval system in a computer, a digital representation has to be defined for it. This
paper describes the algebraic model and data structure used by Labanatory, which can be used for
search as well as other operations. First of all, however, the general problems associated with
searches and the related solutions will be demonstrated with a simple case, the case of English texts
and text editors.

Writing represents speech with a sequence of letters. Handling texts written by hand and scanned
from paper is a tedious exercise for the purposes of a computerized search. (Image processing
algorithms are statistics-based, thus they cannot guarantee hits with 100% certainty.) Therefore, a
special device, the keyboard is used for text input, where a text is typed character by character.
Characters are stored in a computer as unique identifiers; a sequence of characters is represented
with a sequence of integers1. For example, the following text is represented with three integers in
the standard ASCII coding:

sit

Finding a text in another, longer text is achieved as a pattern search in the corresponding integer
sequence representation: while the first integer pattern is gradually being slid on the second one, a
match is examined between them2. Where the two patterns match, a hit is indicated, and the place
of the match in the representation shows the place of the hit in the text. For example:

sit is to be searched in this text:
She sat, he did not sit.

 hit
that is in the representation,

 is to be searched in this integer sequence:

 hit

115 105 116

83 104 101 32 115 97 116 44 32 104 101 32 100 105 100 32 110 111 116 32 115 105 116 46

115 105 116

Misi: An algebraic representation of Labanotation for retrieval and other operations

 2

In the above search, the past tense of the word “sit” has not been found of course, because the
three-character pattern did not match at the position of the text “sat”. Various forms of a word can
be found with several consecutive searches or with a so-called complex search where logical
operators (OR, NOT) are used in one query:

sit OR sat is to be searched in this text:
She sat, he did not sit.

 hit hit

that is in the representation,

 OR is to be searched in this integer sequence:

 hit hit

Labanotation and search

Analogously to written texts, processing scanned images of hand-drawn Labanotation scores is an
inefficient exercise. Using a keyboard and a mouse as input devices, the user can select
Labanotation signs and place them into a staff. As soon as a sign is selected, it is assigned an integer
that is unique for its particular sign form. Besides these sign identifiers, the coordinates of the signs
and the vertical length of stretchable signs (that is path, direction, revolution signs, action strokes,
motion toward/away signs, vertical bows, inclusion bows, addition bows) have to be stored for
each sign element of a Laban-pattern3.
The kinetogram in the next figure contains two signs. In the second drawing, two coordinate axes
are added so that the coordinates of the signs can be determined. (More precisely, the coordinates
of the bottom line center point of the minimum bounding rectangle of each sign. The staff width is
8 units and the measure length is 4 units.) Next to the kinetogram, the representation of the Laban-
pattern is shown, which lists the pattern elements: first the identifier of the space measurement sign
(46) and its 2D coordinates, then the identifier of the direction sign (32), its 2D coordinates and its
length.

To what extent is this representation suitable for retrieval purposes? Before answering this, other
basic questions must be answered first. What general requirements can be set for searches on
kinetograms? Where are the hits expected for example in the next search?

{

(46, -3.5, 0),

(32, -0.5, 0, 4)
}

83 104 101 32 115 97 116 44 32 104 101 32 100 105 100 32 110 111 116 32 115 105 116 46

115 105 116 115 97 116

Misi: An algebraic representation of Labanotation for retrieval and other operations

 3

 is to be searched in this:

It is a normal expectation that hits should be detected at the places indicated with question marks,
where the match of the sign-patterns is not perfect, but one of the different types of matches
shown below applies. The definitions of these matches were introduced before (Misi, 2005; Misi, 2006),
and only examples for them are shown here.

 exactly matches

 sign-length tolerantly matches (above: measure 1, beat 1).

 symmetrically matches (above: measure 2, beat 2).

 augmentedly matches (above: measure 3).

 pre-sign tolerantly matches (above: measure 2, beat 1).

Misi: An algebraic representation of Labanotation for retrieval and other operations

 4

The 2D-coordinate-enumerating representation shown above allows the examination of all five
matches, four of them quite easily (the exact match: with checking all the sign data; the sign-length
tolerant match: with eliminating sign-length data; the symmetric match: with a certain horizontal
mirroring; and the augmented match: with a certain vertical lengthening)4, but a simple operation is
not sufficient for the fifth match. In the case of the pre-sign tolerant match, there is a vertical shift
in the coordinate system a) by the length of a pre-sign (space measurements, body parts, joint signs,
keys), b) but into only a certain direction (up, if there is no pre-sign and down, if a pre-sign is
placed), since the shift cannot cross the measure line – and this is the point where understanding of
time indication in Labanotation comes into play.
The match examples presented above are valid at the graphic level. Beyond the graphic level,
however, syntactic and semantic levels also exist, and retrieval operating on these levels might also
be expected. The concepts of graphic, syntactic and semantic levels were introduced in previous
papers (Misi, 2005; Misi, 2006) and they are illustrated below with the following equalities.
Two kinetograms are graphically equal if they describe movements with the same signs, each in the
same 2D position. Example:

 and are equal graphically.

Two kinetograms are syntactically equal if they describe movements with the same signs, each with
the same meaning. Example:

 and are equal syntactically.

Two kinetograms are semantically equal if they describe the same movement. Example:

 and are equal semantically.

Labanotation users can rightly expect that a retrieval program can perform at least syntactic
searches. As with the pre-sign tolerant match, syntactic operations require the recognition of a sign
in a 2D environment: the environment where its meaning is still the same (under the definition of
syntactic equality).

The aim is to have a representation that supports syntactic and pre-sign tolerant search, while
allowing examination of all previously mentioned matches and their combinations. (It is possible to
examine a match that is syntactical, symmetrical, augmented, sign-length tolerant and pre-sign
tolerant at the same time.) This representation will be a 2D matrix described below.
The basic idea is very simple. If an imaginary grid is placed on the kinetogram, coordinate intervals
appear and can discretize x and y coordinate values. (If the signs are focused in two kinetograms,
the corresponding signs will be put into the corresponding cells even if the signs are placed near but
not exactly in the same 2D position. Matching these cells instead of examining coordinate values
will decrease the computational effort.)
The first question is where the grid should be placed on kinetograms and how dense it should be.
Horizontally, there is natural grid size that comes from Labanotation: the staff column width.
Vertically, it is worth considering the start of beats (measure lines or tick marks) or subdivisions of
the beats. The appropriate vertical grid size depends on the general rhythm of the dance in

Misi: An algebraic representation of Labanotation for retrieval and other operations

 5

question. Its suggested value is the length of the shortest direction signs used in the score. (In the
case of the analyzed Transylvanian dance (Misi, 2005), a measure was divided into two or four parts.
The examples in this paper will show the quarter-divided representation.) There is no point in
choosing a vertical grid size that is less than the length of a pre-sign, because, as pointed out later,
only cells that are vertically long enough allow the examination of pre-sign tolerant matches.
Therefore, the representation of a kinetogram is a two-dimensional matrix. The elements of the
matrix are identifiers of Labanotation signs. Each sign identifier is inserted into the matrix element
that belongs to the grid cell in which the sign is placed. The end of each stretchable sign is
represented in a separate cell, after the execution of an invertible mathematical operation on the
given sign identifier. (In this way it is known whether an identifier represents a sign-end or not, and
if yes, which sign end). The matrix elements are all zeros where there are no signs in the grid cell5.
In the next figure, the grid on the kinetogram determines 12 cell columns and 4 cell rows per
measure. Next to the kinetogram, its matrix representation is shown. Three integers are inserted
into the matrix: 46 is the identifier of the first degree of the space measurement sign, 32 means the
left direction sign, and 532 indicates its sign-end (the value is calculated by adding 500).

With a well-constructed matrix representation, Labanotation search can be performed as follows:
while a matrix pattern is being gradually slid on another matrix, a pattern match has to be examined
for the non-zero elements6.

 is to be searched in

For the time being, question marks replace the codes of the symmetrical sign of the left direction
sign; the integers will be given later. The dotted elements are not interesting in this search;
regardless of the dots, which can be either zeros or any sign identifiers, the 2D pattern containing
three integers can be found by sliding and matching it. Obviously, searches for any Laban pattern

0 0 0 0 0 532 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 46 0 32 0 0 0 0 0 0

0 0 0 0 0 532 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 46 0 32 0 0 0 0 0 0

. 532

.

.

.

.

.

.

. . . 46 . 32

. ?

.

.

. ? . . 46 . .

. 532

.

.

. . . 46 . 32

.

.

.

.

. 532

.

.

. . . 46 . 32

Misi: An algebraic representation of Labanotation for retrieval and other operations

 6

can be executed in any other Laban pattern. General rules have to be established for the creation of
matrices, and the rules have to ensure that the matrices, as integer patterns, will match if the
corresponding Laban-patterns match.
The task is to find general rules that describe the insertion of sign identifiers into the matrix. The
aim is to insert all sign identifiers, and every one of them to a definite place in the matrix7. The
matrix has to be well-defined: so that after the construction of two matrices, it can be examined in
the same place in the matrices whether the identifiers of two corresponding signs match. On the
other hand, the matrix has to allow searches for either individual signs or notation parts.
When implementing the idea of the matrix representation, the matrix will be defined more and
more precisely. Certain problems are encountered during the implementation, and possible
solutions for them are described below. The grey lines in the kinetograms show the problematic
grid cell, and the bold numbers show the corresponding sign identifiers.
Problem 1: how to represent a step and a jump so that they can be distinguished? Solution: the
vertical discretizing coordinate intervals will have to include the lower limit but exclude the upper
limit. (This way a sign-end in the position of a cell border line – e.g. the end of a direction sign that
indicates a step – will be inserted into the next time cell. Since this can be placed at the end of the
staff, the matrix will contain one more row.)

Problem 2: how to represent a sign-end, if it is placed in a cell where another sign is also placed?
Solution: new matrix columns will have to be introduced for sign-ends next to the staff columns of
stretchable signs. (E.g. a direction sign in a support column will be represented in two matrix
columns.)

Problem 3: how to represent various signs if they are placed in the same cell? Solution: new matrix
columns will have to be introduced for all the signs that can be placed in the relevant staff column.
(E.g. since the support column can include both direction and space measurement signs, they will
be represented in different matrix columns.)

This example illustrates that having cells that are vertically long enough means that the start of a
directions sign is placed into the same cell, whether the sign is preceded by a pre-sign or not.
Therefore, the match of the representing matrices will induce a pre-sign tolerant match of the
kinetograms. (This and the following figures do not show all the columns of the representing
matrices, which is indicated with suspension points.)

0 0 0 0 0 0 523 0 523 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 23 532 23 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 32 0 0 0 0 0 0 0 0

 0 0 0 0 0 0 532 0 0 0 0 0 0 0

 0 0 0 0 0 0 0 0 0 0 0 0 0 0

… 0 0 0 0 0 0 0 0 0 0 0 0 0 0 …

 0 0 0 0 0 0 0 0 0 0 0 0 0 0

 0 0 0 0 52 32 0 0 0 0 0 0 0 0

0 0 0 0 0 0 523 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 23 0 0 0 0 0

0 0 0 0 0 532 0 0 0 0 0 0

0 0 0 0 0 32 0 0 0 0 0 0

0 0 0 0 0 0 523 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 532 23 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 32 0 0 0 0 0 0

Misi: An algebraic representation of Labanotation for retrieval and other operations

 7

Problem 4: how to represent doubled signs? Solution: new, secondary matrix columns will have to
be introduced for signs that can be doubled. (One of the matrix column pairs has to be appointed
as the primary column so that the sign identifier will be inserted into the primary one, if the relevant
sign is not doubled.)

Problem 5: at which cell should a contact bow be represented? Solution: in order to have
information about both body parts touching each other, two ends of a contact bow will have to be
represented with two identifiers in the matrix. (More precisely, the left and the right end will be
identified with different integers to distinguish them.)

Problem 6: how to represent signs that have no time value, just modify the meaning of other signs?
Idea (not developed solution): if an auxiliary sign does not have a standard place in Labanotation,
and therefore its cell is not fixed, a matrix transformation should be performed: the identifiers of
the auxiliary signs will be ’projected down’ to the row of the identifier of its main sign. (E.g. a pin
beside a direction sign will be represented at the start of the direction sign.)

Remark: ticks and measure lines can be represented as imaginary identifiers in a matrix column, for
measure line relation searches. For symmetric searches, not only the symmetrical pairs of matrix
columns, but the symmetrical pairs of sign identifiers have to be stored as well.

 , 32 27

 0 0 0 0 0 0 0 0 0 0 0 514

 0 0 0 0 0 0 0 0 0 0 0 0

… 0 0 0 0 0 0 … 0 0 0 0 0 0 …

 0 0 0 0 0 0 0 0 0 0 0 0

 0 0 0 0 0 300 0 0 161 161 14 0

 0 0 0 0 0 0 998 0 527 0 0 0 0

 0 0 0 0 0 0 0 0 0 0 0 0 0

 0 0 0 0 0 0 0 0 0 0 0 0 0

 0 0 0 0 0 0 0 0 0 0 0 0 0

… 0 0 0 0 0 532 997 27 0 0 0 0 0 …

 0 0 0 0 0 0 0 0 0 0 0 0 0

 0 0 0 0 0 0 0 0 0 0 0 0 0

 0 0 0 0 0 0 0 0 0 0 0 0 0

 0 0 0 0 32 0 998 0 0 0 0 0 0

 0 0 0 0 0 532 0 0 0 0 0 512

 0 0 0 0 0 0 0 0 0 0 0 0

… 0 0 0 0 … 0 0 0 0 … 0 0 0 0 …

 0 0 0 0 0 0 0 0 0 0 0 0

 0 0 0 139 23 0 0 0 -139 0 12 0

 0 0 0 0 0 0 523 0 0 0 0 0 0 0

 0 0 0 0 0 0 0 0 0 0 0 0 0 0

… 0 0 94 0 0 … 0 0 0 0 … 0 0 0 0 0 …

 0 0 0 0 0 0 0 0 0 0 0 0 0 0

 0 0 0 0 0 23 0 0 0 0 0 0 0 0

 0 0 0 0 0 0 523 0 0 0 0 0 0 0

 0 0 0 0 0 0 0 0 0 0 0 0 0 0

… 0 0 0 0 0 … 0 0 0 0 … 0 0 0 0 0 …

 0 0 94 0 0 0 0 0 0 0 0 0 0 0

 0 0 0 0 0 23 0 0 0 0 0 0 0 0

 0 0 0 0 0 0 523 0 0 0 0 0 0 0

 0 0 0 0 0 0 0 0 0 0 0 0 0 0

… 0 0 0 0 0 … 0 0 0 0 … 0 0 0 0 0 …

 0 0 0 0 0 0 0 0 0 0 0 0 0 0

 0 0 94 0 0 23 0 0 0 0 0 0 0 0

Misi: An algebraic representation of Labanotation for retrieval and other operations

 8

As the representation becomes more elaborate, the number of matrix columns increases quite
rapidly. Nevertheless, it is worth representing signs separately, sign category by sign category.
Notating a turn in support columns is a good example. Since it is indicated with a complex sign that
has two graphical components, a rotation sign and a pin, and these are represented in different
matrix columns, it is possible to search for the direction or the degree of the turn separately.
Additionally, having matrix columns that belong to sign categories allows searches with wildcard
signs (Misi, 2002): the identifier of a wildcard sign will be inserted into the matrix column that
belongs to the sign category in question.
The representation that was improved during the development of Labanatory is a matrix containing
166 columns. 26 sign categories were defined8. One identifier is stored in the case of 14 sign
categories, two identifiers are stored for 9 categories where the signs can be stretched (because of
sign-start and sign-end), two identifiers are stored for 2 categories (hooks and dynamics signs)
where the signs can be doubled, and four identifiers are stored for 1 category (the contact bows,

which can also be doubled). This is 14+9⋅2+2⋅2+1⋅4=40 different matrix column types. 17
discretizing cells were defined horizontally on the basis of staff columns9, and therefore a matrix

should contain 40⋅17=680 columns. There is no need for 680 columns, since certain signs are never
placed in certain staff columns, and given signs can be placed in only one of a given group of
neighboring columns. Insertion rules describe how to insert sign identifiers into a matrix
representing a staff10, and the 17 staff columns are mapped to 166 (instead of 680) matrix columns
under these rules.
The Labanatory software creates the matrices from digitized scores on the basis of sign data (Fügedi,
1999) and the grid size set by the user, then performs the requested search by sliding and matching
the matrices.
This figure shows the relevant matrix columns in the search of the example discussed above.

Searching

 in

 0 0 0 0 0 532 998 0 0 0 0 0 0

 0 0 0 0 0 0 0 0 0 0 0 0 0

… 0 0 0 … 0 0 0 0 0 0 0 … 0 0 0 …

 0 0 0 0 0 0 0 0 0 0 0 0 0

 0 0 46 0 32 0 998 0 0 0 0 0 0

 0 0 0 0 0 532 998 0 0 0 0 0 522

 0 0 0 0 0 0 0 0 0 0 0 0 0

 0 0 0 0 0 0 0 0 0 0 0 0 0

 0 0 0 0 0 0 0 0 0 0 0 0 0

 0 0 0 0 0 0 997 0 0 0 0 0 0

 0 0 0 0 0 0 0 0 0 0 46 22 0

 0 0 0 0 0 0 0 0 0 0 0 0 0

 0 0 0 0 0 0 0 0 0 0 0 0 0

 0 512 46 0 32 0 998 0 527 0 0 0 0

 0 0 0 0 0 0 0 0 0 0 0 0 0

 12 0 46 0 0 0 0 0 0 0 0 0 0

 0 0 0 0 0 0 0 0 0 0 0 0 0

… 0 0 0 … 0 0 532 997 27 0 0 … 46 0 512 …

 0 0 0 0 0 0 0 0 0 0 0 0 0

 0 0 0 0 0 0 0 0 0 0 46 12 0

 0 0 0 0 0 0 0 0 0 0 0 0 0

 0 0 46 52 32 0 998 0 523 0 0 0 0

 0 0 0 0 0 0 0 0 0 0 0 0 0

 0 0 0 0 0 0 0 0 0 0 0 0 0

 0 0 0 0 0 0 0 0 0 0 0 0 0

 0 0 0 0 0 0 997 23 0 0 0 0 0

 0 0 0 0 0 532 0 0 0 0 0 0 0

 0 0 0 0 0 0 0 0 0 0 0 0 0

 0 0 0 0 0 0 0 0 0 0 0 0 0

 0 0 46 0 32 0 998 0 0 0 0 0 0

Misi: An algebraic representation of Labanotation for retrieval and other operations

 9

Other operations

The matrix representation can also be used for operations other than searches. Intersection and
subtraction of Laban-patterns11 can be created by examining matrix cells rather than 2D
coordinates, in a method that approaches the syntactic level. The next figure is an example for an
intersection (common parts of kinetograms); the operation is performed with the matrices at right12.

Creating the intersection of

 and

The result is

Additionally, the matrix representation can serve as the basis for methods of multivariate statistics
and data mining that can reveal hidden relationships between elements of the notated dance.

Results

This paper described a representation of Labanotation that allows operations between kinetograms
at a quasi-syntactic level, above the graphic level. This level is not purely syntactic, because whether
the operations work on the syntactic level depends on how coordinates are discretized (on the
selected grid size) and how matrices are transformed before the operations (see problem 6).
One may ask whether the user should really have such an in-depth knowledge of software
representation when he simply wants to perform a search and expects hits from the computer. The
answer is yes: the user can only use a complex system effectively if he has an understanding of the
background processes. This is true in the case of searches in relational databases or in Internet
contents. These systems – just as Labanotation – are more complex than the text search mentioned
in the Introduction.

The matrix representation shown in this paper is not the only possible representation of
Labanotation. It has no great importance in itself. It is more important that the paper defined
matches on kinetograms, and described general requirements of searches (and other operations) for
Labanotation systems in the future. The exact description of these requirements is necessary in
order to meet the needs of Labanotation users.

 0 0 0 0 0 532 998 0 0 0 0 0 512

 0 0 0 0 0 0 0 0 0 0 0 0 0

… 0 0 0 0 … 0 0 0 0 0 0 … 46 12 0 …

 0 0 0 0 0 0 0 0 0 0 0 0 0

 0 0 47 0 32 0 998 0 0 0 0 0 0

 0 0 0 0 0 532 998 0 0 0 0 0 512

 0 0 0 0 0 0 0 0 0 0 0 0 0

… 0 0 0 0 … 0 0 0 0 0 0 … 46 12 0 …

 0 0 0 0 0 0 0 0 0 0 0 0 0

 0 0 46 153 32 0 998 0 0 0 0 0 0

 0 0 0 0 0 532 998 0 0 0 0 0 512

 0 0 0 0 0 0 0 0 0 0 0 0 0

… 0 0 0 0 … 0 0 0 0 0 0 … 46 12 0 …

 0 0 0 0 0 0 0 0 0 0 0 0 0

 0 0 0 0 32 0 998 0 0 0 0 0 0

Misi: An algebraic representation of Labanotation for retrieval and other operations

 10

Notes

1
 With mathematical description:
Let C be the set of characters (lowercase, uppercase letters, digits, punctuation marks and space).

Let anx1T=(a1, ..., an) and bmx1
T=(b1, ..., bm) be two character row vectors, ai, bj ∈C (1≤i≤n, 1≤j≤m, i, j, n, m∈N), n≤m.

Let f:C→N be an invertible character coding function. Coding the elements of the vectors above ci=f(ai), dj=f(bj),
and now cnx1T=(c1, ..., cn) and dmx1

T=(d1, ..., dm) vectors can be examined.

2
 Continuing the previous note, anx1T occurs in bmx1

T is said, if ∃ k∈N0 that ∀i (1≤i≤n): bi+k=ai.

Similarly, cnx1T vector occurs in dmx1
T is said, if ∃ k∈N0 that ∀i (1≤i≤n): ci+k=di.

It is provable that cnx1T occurs in dmx1
T, if and only if anx1T occurs in bmx1

T.

3
 As a mathematical structure: Let J be the set of Labanotation signs, I ⊂J the set of the graphically stretchable signs.

A Laban-pattern is defined as a finite set of (ordered) quadruples: L⊂{(j, x, y, h)|j∈J, x, y, h∈R, h=0, if j∈J\I}.

4
 Let L1 and L2 be two Laban-patterns. Definitions:

L1 exactly matches L2 is said, if L1⊆L2, that is if

∀ l1=(j1, x1, y1, h1) ∈L1 ∃ l2=(j2, x2, y2, h2) ∈L2: j1= j2, x1= x2, y1= y2, h1= h2.
L1 sign-length tolerantly matches L2 is said, if

∀ l1=(j1, x1, y1, h1) ∈L1 ∃ l2=(j2, x2, y2, h2) ∈L2: j1= j2, x1= x2, y1= y2.
L1 symmetrically matches L2 is said, if

L1sz matches L2, where L1sz is from L1 with transformation (j, x, y, h)→(j, –x, y, h) on its elements.
L1 augmentedly matches L2 is said, if

L1a matches L2, where L1a is from L1 with transformation (j, x, y, h)→(j, 2x, y, 2h) on its elements.
L1 occurs in L2 is said, if

∃ t∈R that L1t matches L2, where L1t is from L1 with transformation (j, x, y, h)→(j, x, y+t, h) on its elements.

5
 Retaining the above indications, let f: J→N be a Labanotation sign coding invertible function.

Let r∈N, t1, t2, ..., tr∈R and d∈R be given constants as parameters for discretization.
The matrix representation of the Laban-pattern L is calculated as follows: g(L)=Mnxm=(ckl), where ckl=

= f(j), if ∃ (j, x, y, h)∈L: tl≤x<tl+1, d⋅(n-k)≤y<d⋅(n-k+1).

= f(j)+z, z∈N is a fixed constant, z>|J|, if ∃ (j, x, y, h)∈L: j∈I, tl≤x<tl+1, d⋅(n-k)≤y+h<d⋅(n-k+1).
= 0 else.

6
 Let L1, L2 be two Laban-patterns (|L1|≤|L2|), their matrix representation: g(L1)=Anxk=(aij), g(L2)=Bmxk=(bij).

Definition: Anxk occurs in Bmxk is said, if ∃ l∈N0 that ∀i,j: b(i+l)j=aij, if aij≠0.

7
 The target is to define g() so that g() should be a function where the next statement is true:
Anxk occurs in Bmxk, if and only if L1 occurs in L2.

8
 Enumerating in C programming language:

enum ESrchSignCategories {SRCH_CATG_NO_LEVEL_DIRECTION, SRCH_CATG_DIRECTION, SRCH_CATG_SPACE_MEASUREMENT,

 SRCH_CATG_B_PINS, SRCH_CATG_T_PINS, SRCH_CATG_W_PINS,

 SRCH_CATG_RETENTION, SRCH_CATG_CANCELLATION, SRCH_CATG_BOW_CARETS,

 SRCH_CATG_BOW_INCLUSION, SRCH_CATG_BOW_VERTICALS_LEFT, SRCH_CATG_BOW_VERTICALS_RIGHT,

 SRCH_CATG_WAVES, SRCH_CATG_TIME_EX, SRCH_CATG_STROKE_TAIL,

 SRCH_CATG_DYNAMICS, SRCH_CATG_HOOKS, SRCH_CATG_CONTACT,

 SRCH_CATG_CONTACT_BOW_HUN_P, SRCH_CATG_TORSO, SRCH_CATG_JOINTS,

 SRCH_CATG_ROTATION, SRCH_CATG_PATH_STRAIGHT, SRCH_CATG_PATH_CIRCULAR,

 SRCH_CATG_FACING, SRCH_CATG_TOOLS};

9

enum ESrchStaffColumns {SRCH_STAFF_COL__LEFT_OUTER_OTHER, SRCH_STAFF_COL__LEFT_FOREARM, SRCH_STAFF_COL__LEFT_ARM,

 SRCH_STAFF_COL__LEFT_OUTER_AUX, SRCH_STAFF_COL__LEFT_TRUNK_PART, SRCH_STAFF_COL__LEFT_LEG_GESTURE,

 SRCH_STAFF_COL__LEFT_INNER_AUX, SRCH_STAFF_COL__LEFT_SUPPORT, SRCH_STAFF_COL___SUPPORT_LINE,

 SRCH_STAFF_COL_RIGHT_SUPPORT, SRCH_STAFF_COL_RIGHT_INNER_AUX, SRCH_STAFF_COL_RIGHT_LEG_GESTURE,

 SRCH_STAFF_COL_RIGHT_TRUNK_PART, SRCH_STAFF_COL_RIGHT_OUTER_AUX, SRCH_STAFF_COL_RIGHT_ARM,

 SRCH_STAFF_COL_RIGHT_FOREARM, SRCH_STAFF_COL_RIGHT_OUTER_OTHER};

Misi: An algebraic representation of Labanotation for retrieval and other operations

 11

10
 The insertion rules for space measurements, direction signs and hooks are listed here:

static SSrchInsertionRule a_st_rules[]=

/*

{ sign_category,

 {{ sign_id_type, x_coord_inside_sign,

 {

 {staff_column, matrix_column,

 second_matrix_column},

 ...

 }, y_coord_inside_sign }

 ...

 }},

*/

{SRCH_CATG_SPACE_MEASUREMENT,

 {{ SRCH_INS_ID, 0.5, {

 {SRCH_STAFF_COL__LEFT_OUTER_OTHER, SRCE_MATRIX_COL__LEFT_OTHER_X},

 {SRCH_STAFF_COL__LEFT_FOREARM, SRCE_MATRIX_COL__LEFT_ARM_X},

 {SRCH_STAFF_COL__LEFT_ARM, SRCE_MATRIX_COL__LEFT_ARM_X},

 {SRCH_STAFF_COL__LEFT_OUTER_AUX, SRCE_MATRIX_COL__LEFT_ARM_X},

 {SRCH_STAFF_COL__LEFT_TRUNK_PART, SRCE_MATRIX_COL__LEFT_TRUNK_X},

 {SRCH_STAFF_COL__LEFT_LEG_GESTURE, SRCE_MATRIX_COL__LEFT_LEG_GESTURE_X},

 {SRCH_STAFF_COL__LEFT_INNER_AUX, SRCE_MATRIX_COL__LEFT_LEG_GESTURE_X},

 {SRCH_STAFF_COL__LEFT_SUPPORT, SRCE_MATRIX_COL__LEFT_LEG_SUPPORT_X},

 {SRCH_STAFF_COL_RIGHT_SUPPORT, SRCE_MATRIX_COL_RIGHT_LEG_SUPPORT_X},

 {SRCH_STAFF_COL_RIGHT_INNER_AUX, SRCE_MATRIX_COL_RIGHT_LEG_GESTURE_X},

 {SRCH_STAFF_COL_RIGHT_LEG_GESTURE, SRCE_MATRIX_COL_RIGHT_LEG_GESTURE_X},

 {SRCH_STAFF_COL_RIGHT_TRUNK_PART, SRCE_MATRIX_COL_RIGHT_TRUNK_X},

 {SRCH_STAFF_COL_RIGHT_OUTER_AUX, SRCE_MATRIX_COL_RIGHT_ARM_X},

 {SRCH_STAFF_COL_RIGHT_ARM, SRCE_MATRIX_COL_RIGHT_ARM_X},

 {SRCH_STAFF_COL_RIGHT_FOREARM, SRCE_MATRIX_COL_RIGHT_ARM_X},

 {SRCH_STAFF_COL_RIGHT_OUTER_OTHER, SRCE_MATRIX_COL_RIGHT_OTHER_X},

 }, 0.01 }}},

{SRCH_CATG_DIRECTION,

 {{ SRCH_INS_ID, 0.5, {

 {SRCH_STAFF_COL__LEFT_OUTER_OTHER, SRCE_MATRIX_COL__LEFT_OTHER_DIRECTION},

 {SRCH_STAFF_COL__LEFT_FOREARM, SRCE_MATRIX_COL__LEFT_ARM_GESTURE_FORE},

 {SRCH_STAFF_COL__LEFT_ARM, SRCE_MATRIX_COL__LEFT_ARM_GESTURE},

 {SRCH_STAFF_COL__LEFT_TRUNK_PART, SRCE_MATRIX_COL__LEFT_TRUNK_DIRECTION},

 {SRCH_STAFF_COL__LEFT_LEG_GESTURE, SRCE_MATRIX_COL__LEFT_LEG_GESTURE},

 {SRCH_STAFF_COL__LEFT_INNER_AUX, SRCE_MATRIX_COL__LEFT_LEG_GESTURE_LOW},

 {SRCH_STAFF_COL__LEFT_SUPPORT, SRCE_MATRIX_COL__LEFT_LEG_SUPPORT},

 {SRCH_STAFF_COL___SUPPORT_LINE, SRCE_MATRIX_COL___ANY_ADLIB},

 {SRCH_STAFF_COL_RIGHT_SUPPORT, SRCE_MATRIX_COL_RIGHT_LEG_SUPPORT},

 {SRCH_STAFF_COL_RIGHT_INNER_AUX, SRCE_MATRIX_COL_RIGHT_LEG_GESTURE_LOW},

 {SRCH_STAFF_COL_RIGHT_LEG_GESTURE, SRCE_MATRIX_COL_RIGHT_LEG_GESTURE},

 {SRCH_STAFF_COL_RIGHT_TRUNK_PART, SRCE_MATRIX_COL_RIGHT_TRUNK_DIRECTION},

 {SRCH_STAFF_COL_RIGHT_ARM, SRCE_MATRIX_COL_RIGHT_ARM_GESTURE},

 {SRCH_STAFF_COL_RIGHT_FOREARM, SRCE_MATRIX_COL_RIGHT_ARM_GESTURE_FORE},

 {SRCH_STAFF_COL_RIGHT_OUTER_OTHER, SRCE_MATRIX_COL_RIGHT_OTHER_DIRECTION},

 }, 0.01 },

 { SRCH_INS_END, 0.5, {

 {SRCH_STAFF_COL__LEFT_OUTER_OTHER, SRCE_MATRIX_COL__LEFT_OTHER_DIRECTION_END},

 {SRCH_STAFF_COL__LEFT_FOREARM, SRCE_MATRIX_COL__LEFT_ARM_GESTURE_FORE_END},

 {SRCH_STAFF_COL__LEFT_ARM, SRCE_MATRIX_COL__LEFT_ARM_GESTURE_END},

 {SRCH_STAFF_COL__LEFT_TRUNK_PART, SRCE_MATRIX_COL__LEFT_TRUNK_DIRECTION_END},

 {SRCH_STAFF_COL__LEFT_LEG_GESTURE, SRCE_MATRIX_COL__LEFT_LEG_GESTURE_END},

 {SRCH_STAFF_COL__LEFT_INNER_AUX, SRCE_MATRIX_COL__LEFT_LEG_GESTURE_LOW_END},

 {SRCH_STAFF_COL__LEFT_SUPPORT, SRCE_MATRIX_COL__LEFT_LEG_SUPPORT_END},

 {SRCH_STAFF_COL___SUPPORT_LINE, SRCE_MATRIX_COL___ANY_ADLIB_END},

 {SRCH_STAFF_COL_RIGHT_SUPPORT, SRCE_MATRIX_COL_RIGHT_LEG_SUPPORT_END},

 {SRCH_STAFF_COL_RIGHT_INNER_AUX, SRCE_MATRIX_COL_RIGHT_LEG_GESTURE_LOW_END},

 {SRCH_STAFF_COL_RIGHT_LEG_GESTURE, SRCE_MATRIX_COL_RIGHT_LEG_GESTURE_END},

 {SRCH_STAFF_COL_RIGHT_TRUNK_PART, SRCE_MATRIX_COL_RIGHT_TRUNK_DIRECTION_END},

 {SRCH_STAFF_COL_RIGHT_ARM, SRCE_MATRIX_COL_RIGHT_ARM_GESTURE_END},

 {SRCH_STAFF_COL_RIGHT_FOREARM, SRCE_MATRIX_COL_RIGHT_ARM_GESTURE_FORE_END},

 {SRCH_STAFF_COL_RIGHT_OUTER_OTHER, SRCE_MATRIX_COL_RIGHT_OTHER_DIRECTION_END},

 }, 1 }}},

{SRCH_CATG_HOOKS,

 {{ SRCH_INS_ID, 0.5, {

 {SRCH_STAFF_COL__LEFT_LEG_GESTURE, SRCE_MATRIX_COL__LEFT_SOLE,

 SRCE_MATRIX_COL__LEFT_SOLE_2ND},

 {SRCH_STAFF_COL__LEFT_INNER_AUX, SRCE_MATRIX_COL__LEFT_SOLE,

 SRCE_MATRIX_COL__LEFT_SOLE_2ND},

 {SRCH_STAFF_COL__LEFT_SUPPORT, SRCE_MATRIX_COL__LEFT_SOLE,

 SRCE_MATRIX_COL__LEFT_SOLE_2ND},

 {SRCH_STAFF_COL_RIGHT_SUPPORT, SRCE_MATRIX_COL_RIGHT_SOLE,

 SRCE_MATRIX_COL_RIGHT_SOLE_2ND},

 {SRCH_STAFF_COL_RIGHT_INNER_AUX, SRCE_MATRIX_COL_RIGHT_SOLE,

 SRCE_MATRIX_COL_RIGHT_SOLE_2ND},

 {SRCH_STAFF_COL_RIGHT_LEG_GESTURE, SRCE_MATRIX_COL_RIGHT_SOLE,

 SRCE_MATRIX_COL_RIGHT_SOLE_2ND},

 }, 0.5 }}},

/*

...

*/

};

11
 Size, intersection and subtraction of Laban-patterns are defined as set operations (|L|, L1\L2, L1∩L2).

12
 Let Anxm=(aij) and Bnxm=(bij) be two matrices, aij , bij ∈ N0 (n, m, i, j∈N, 1≤i≤n, 1≤j≤m).

Projected intersection of Anxm and Bnxm is Cnxm=(cij), where ∀i,j: cij=

=aij, if aij=bij.

=0, if aij≠bij.

Misi: An algebraic representation of Labanotation for retrieval and other operations

 12

Bibliography

Calvert, Tom – Wilke, Lars – Ryman, Rhonda – Fox, Ilene (2005): Applications of Computers to Dance.
IEEE Computer Graphics and Applications XXV/2. pp. 6-12.

Fügedi, János (1995): Applying dance structure and motive collections by computer - DanceStruct 1.0
Proceedings of the 19th Biennial Conference of ICKL, Paris, 1995. pp. 71-82.

Fügedi, János (1999): “Labanatorium” szimbólum analízis.
Manuscript. Hungarian Academy of Sciences, ZTI Akt. 1488.

Misi, Gábor (2002): Labanatory. A computer program to analyse dance.
Booklet of Abstracts for the 22nd Symposium of the ICTM Study Group on Ethnochoreology, Szeged, 2002. p. 18.
<www.labanatory.com/common/download/2002ICTM/ICTM02abs.pdf>

Misi, Gábor (2005): Az erdélyi férfitáncok formális elemzésérıl.
A tévesztések, korrigálások, illetve általában a táncelem-kapcsolatok vizsgálatával.
Manuscript. Hungarian Academy of Sciences, ZTI Akt. 1653.
<www.labanatory.com/common/download/2006MGYE/Formalis.pdf>

Misi, Gábor (2006): Formal methods in form analysis of Transylvanian male solo dances.
Manuscript. Hungarian Academy of Sciences, ZTI Akt. 1660.
<www.labanatory.com/common/download/2006ICTM/Formalm.pdf>

