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Introduction 
 
Computer applications for Kinetography Laban/Labanotation are mostly simple graphic editors 
and generally do not contain search facilities. The first experimental software for retrieval was 
DanceStruct (Fügedi, 1995), developed at the Institute for Musicology of the Hungarian Academy of 
Sciences. The next generation application in Hungary is Labanatory (Misi, 2002); its latest version has 
the capability to search for almost all Labanotation signs or sign groups in a score, and its retrieval 
function is unique (Calvert–Wilke–Ryman–Fox, 2005). 
The development of these systems was inspired by the need to support analyses of Central 
European traditional dances, based on the assumption that recurring movements correspond to 
repeating patterns in Labanotation, since similar movements are indicated in a similar way. This 
means that dance elements can be found with pattern matching in a purely formal way (Misi, 2005; 

Misi, 2006). These searches can be performed in any dance style in which movement repetitions exist. 
Searches are useful for spell-checking scores or checking the uniformity of sign usage. 
To implement a retrieval system in a computer, a digital representation has to be defined for it. This 
paper describes the algebraic model and data structure used by Labanatory, which can be used for 
search as well as other operations. First of all, however, the general problems associated with 
searches and the related solutions will be demonstrated with a simple case, the case of English texts 
and text editors. 
 
Writing represents speech with a sequence of letters. Handling texts written by hand and scanned 
from paper is a tedious exercise for the purposes of a computerized search. (Image processing 
algorithms are statistics-based, thus they cannot guarantee hits with 100% certainty.) Therefore, a 
special device, the keyboard is used for text input, where a text is typed character by character. 
Characters are stored in a computer as unique identifiers; a sequence of characters is represented 
with a sequence of integers1. For example, the following text is represented with three integers in 
the standard ASCII coding: 
 
sit 
 

 

 

Finding a text in another, longer text is achieved as a pattern search in the corresponding integer 
sequence representation: while the first integer pattern is gradually being slid on the second one, a 
match is examined between them2. Where the two patterns match, a hit is indicated, and the place 
of the match in the representation shows the place of the hit in the text. For example: 
 
sit is to be searched in this text: 
She sat, he did not sit. 

 
                                                 hit 
that is in the representation, 
 

   is to be searched in this integer sequence: 
 

 
 
                                                                                                                                          hit 

115 105 116 

83 104 101 32 115 97 116 44 32 104 101 32 100 105 100 32 110 111 116 32 115 105 116 46 

115 105 116 
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In the above search, the past tense of the word “sit” has not been found of course, because the 
three-character pattern did not match at the position of the text “sat”. Various forms of a word can 
be found with several consecutive searches or with a so-called complex search where logical 
operators (OR, NOT) are used in one query: 
 

sit  OR  sat  is to be searched in this text: 
She sat, he did not sit. 
 
          hit                                   hit 
 
that is in the representation, 
  

  OR     is to be searched in this integer sequence: 
 
 
 
                                 hit                                                                                                     hit 
 
Labanotation and search 

 

Analogously to written texts, processing scanned images of hand-drawn Labanotation scores is an 
inefficient exercise. Using a keyboard and a mouse as input devices, the user can select 
Labanotation signs and place them into a staff. As soon as a sign is selected, it is assigned an integer 
that is unique for its particular sign form. Besides these sign identifiers, the coordinates of the signs 
and the vertical length of stretchable signs (that is path, direction, revolution signs, action strokes, 
motion toward/away signs, vertical bows, inclusion bows, addition bows) have to be stored for 
each sign element of a Laban-pattern3. 
The kinetogram in the next figure contains two signs. In the second drawing, two coordinate axes 
are added so that the coordinates of the signs can be determined. (More precisely, the coordinates 
of the bottom line center point of the minimum bounding rectangle of each sign. The staff width is 
8 units and the measure length is 4 units.) Next to the kinetogram, the representation of the Laban-
pattern is shown, which lists the pattern elements: first the identifier of the space measurement sign 
(46) and its 2D coordinates, then the identifier of the direction sign (32), its 2D coordinates and its 
length. 
 

 
 

   
 
To what extent is this representation suitable for retrieval purposes? Before answering this, other 
basic questions must be answered first. What general requirements can be set for searches on 
kinetograms? Where are the hits expected for example in the next search? 

{ 

(46, -3.5, 0), 

(32, -0.5, 0, 4) 
} 

83 104 101 32 115 97 116 44 32 104 101 32 100 105 100 32 110 111 116 32 115 105 116 46 

115 105 116 115 97 116 
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    is to be searched in this:         
 
It is a normal expectation that hits should be detected at the places indicated with question marks, 
where the match of the sign-patterns is not perfect, but one of the different types of matches 
shown below applies. The definitions of these matches were introduced before (Misi, 2005; Misi, 2006), 
and only examples for them are shown here. 
 

 

    exactly matches         
 

    sign-length tolerantly matches   (above: measure 1, beat 1). 
 

    symmetrically matches    (above: measure 2, beat 2). 
 

    augmentedly matches    (above: measure 3). 
 

    pre-sign tolerantly matches   (above: measure 2, beat 1). 
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The 2D-coordinate-enumerating representation shown above allows the examination of all five 
matches, four of them quite easily (the exact match: with checking all the sign data; the sign-length 
tolerant match: with eliminating sign-length data; the symmetric match: with a certain horizontal 
mirroring; and the augmented match: with a certain vertical lengthening)4, but a simple operation is 
not sufficient for the fifth match. In the case of the pre-sign tolerant match, there is a vertical shift 
in the coordinate system a) by the length of a pre-sign (space measurements, body parts, joint signs, 
keys), b) but into only a certain direction (up, if there is no pre-sign and down, if a pre-sign is 
placed), since the shift cannot cross the measure line – and this is the point where understanding of 
time indication in Labanotation comes into play. 
The match examples presented above are valid at the graphic level. Beyond the graphic level, 
however, syntactic and semantic levels also exist, and retrieval operating on these levels might also 
be expected. The concepts of graphic, syntactic and semantic levels were introduced in previous 
papers (Misi, 2005; Misi, 2006) and they are illustrated below with the following equalities. 
Two kinetograms are graphically equal if they describe movements with the same signs, each in the 
same 2D position. Example: 
 

    and        are equal graphically. 
 

Two kinetograms are syntactically equal if they describe movements with the same signs, each with 
the same meaning. Example: 
 

    and        are equal syntactically. 
 

Two kinetograms are semantically equal if they describe the same movement. Example: 
 

    and        are equal semantically. 
 

Labanotation users can rightly expect that a retrieval program can perform at least syntactic 
searches. As with the pre-sign tolerant match, syntactic operations require the recognition of a sign 
in a 2D environment: the environment where its meaning is still the same (under the definition of 
syntactic equality). 
 
The aim is to have a representation that supports syntactic and pre-sign tolerant search, while 
allowing examination of all previously mentioned matches and their combinations. (It is possible to 
examine a match that is syntactical, symmetrical, augmented, sign-length tolerant and pre-sign 
tolerant at the same time.) This representation will be a 2D matrix described below. 
The basic idea is very simple. If an imaginary grid is placed on the kinetogram, coordinate intervals 
appear and can discretize x and y coordinate values. (If the signs are focused in two kinetograms, 
the corresponding signs will be put into the corresponding cells even if the signs are placed near but 
not exactly in the same 2D position. Matching these cells instead of examining coordinate values 
will decrease the computational effort.) 
The first question is where the grid should be placed on kinetograms and how dense it should be. 
Horizontally, there is natural grid size that comes from Labanotation: the staff column width. 
Vertically, it is worth considering the start of beats (measure lines or tick marks) or subdivisions of 
the beats. The appropriate vertical grid size depends on the general rhythm of the dance in 
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question. Its suggested value is the length of the shortest direction signs used in the score. (In the 
case of the analyzed Transylvanian dance (Misi, 2005), a measure was divided into two or four parts. 
The examples in this paper will show the quarter-divided representation.) There is no point in 
choosing a vertical grid size that is less than the length of a pre-sign, because, as pointed out later, 
only cells that are vertically long enough allow the examination of pre-sign tolerant matches. 
Therefore, the representation of a kinetogram is a two-dimensional matrix. The elements of the 
matrix are identifiers of Labanotation signs. Each sign identifier is inserted into the matrix element 
that belongs to the grid cell in which the sign is placed. The end of each stretchable sign is 
represented in a separate cell, after the execution of an invertible mathematical operation on the 
given sign identifier. (In this way it is known whether an identifier represents a sign-end or not, and 
if yes, which sign end). The matrix elements are all zeros where there are no signs in the grid cell5. 
In the next figure, the grid on the kinetogram determines 12 cell columns and 4 cell rows per 
measure. Next to the kinetogram, its matrix representation is shown. Three integers are inserted 
into the matrix: 46 is the identifier of the first degree of the space measurement sign, 32 means the 
left direction sign, and 532 indicates its sign-end (the value is calculated by adding 500). 
 

    
 

With a well-constructed matrix representation, Labanotation search can be performed as follows: 
while a matrix pattern is being gradually slid on another matrix, a pattern match has to be examined 
for the non-zero elements6. 
 

                   is to be searched in 
 

                 
 

For the time being, question marks replace the codes of the symmetrical sign of the left direction 
sign; the integers will be given later. The dotted elements are not interesting in this search; 
regardless of the dots, which can be either zeros or any sign identifiers, the 2D pattern containing 
three integers can be found by sliding and matching it. Obviously, searches for any Laban pattern 

0 0 0  0 0 532 0 0 0  0 0 0 

0 0 0  0 0   0 0 0 0  0 0 0 

0 0 0  0 0   0 0 0 0  0 0 0 

0 0 0 46 0  32 0 0 0  0 0 0 

 

0 0 0  0 0 532 0 0 0 0 0 0 

0 0 0  0 0   0 0 0 0 0 0 0 

0 0 0  0 0   0 0 0 0 0 0 0 

0 0 0 46 0  32 0 0 0 0 0 0 
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can be executed in any other Laban pattern. General rules have to be established for the creation of 
matrices, and the rules have to ensure that the matrices, as integer patterns, will match if the 
corresponding Laban-patterns match. 
The task is to find general rules that describe the insertion of sign identifiers into the matrix. The 
aim is to insert all sign identifiers, and every one of them to a definite place in the matrix7. The 
matrix has to be well-defined: so that after the construction of two matrices, it can be examined in 
the same place in the matrices whether the identifiers of two corresponding signs match. On the 
other hand, the matrix has to allow searches for either individual signs or notation parts. 
When implementing the idea of the matrix representation, the matrix will be defined more and 
more precisely. Certain problems are encountered during the implementation, and possible 
solutions for them are described below. The grey lines in the kinetograms show the problematic 
grid cell, and the bold numbers show the corresponding sign identifiers. 
Problem 1: how to represent a step and a jump so that they can be distinguished? Solution: the 
vertical discretizing coordinate intervals will have to include the lower limit but exclude the upper 
limit. (This way a sign-end in the position of a cell border line – e.g. the end of a direction sign that 
indicates a step – will be inserted into the next time cell. Since this can be placed at the end of the 
staff, the matrix will contain one more row.) 
 

 

 
 

 

 
 
Problem 2: how to represent a sign-end, if it is placed in a cell where another sign is also placed? 
Solution: new matrix columns will have to be introduced for sign-ends next to the staff columns of 
stretchable signs. (E.g. a direction sign in a support column will be represented in two matrix 
columns.) 
  

 
 
Problem 3: how to represent various signs if they are placed in the same cell? Solution: new matrix 
columns will have to be introduced for all the signs that can be placed in the relevant staff column. 
(E.g. since the support column can include both direction and space measurement signs, they will 
be represented in different matrix columns.) 
 

 
 
This example illustrates that having cells that are vertically long enough means that the start of a 
directions sign is placed into the same cell, whether the sign is preceded by a pre-sign or not. 
Therefore, the match of the representing matrices will induce a pre-sign tolerant match of the 
kinetograms. (This and the following figures do not show all the columns of the representing 
matrices, which is indicated with suspension points.) 

0 0 0 0 0  0 523  0 523 0 0 0 0 0 

0 0 0 0 0  0   0  0   0 0 0 0 0 0 

0 0 0 0 0 23 532 23   0 0 0 0 0 0 

0 0 0 0 0  0   0  0   0 0 0 0 0 0 

0 0 0 0 0 32   0  0   0 0 0 0 0 0 

  0 0 0 0  0   0 532 0 0 0 0 0 0 0  

  0 0 0 0  0   0   0 0 0 0 0 0 0 0 

… 0 0 0 0  0   0   0 0 0 0 0 0 0 0 … 

  0 0 0 0  0   0   0 0 0 0 0 0 0 0 

  0 0 0 0 52  32   0 0 0 0 0 0 0 0 

0 0 0 0 0   0 523 0 0 0 0 0 

0 0 0 0 0   0   0 0 0 0 0 0 

0 0 0 0 0   0  23 0 0 0 0 0 

0 0 0 0 0 532   0 0 0 0 0 0 

0 0 0 0 0  32   0 0 0 0 0 0 

0 0 0 0 0   0 523 0 0 0 0 0 

0 0 0 0 0   0   0 0 0 0 0 0 

0 0 0 0 0 532  23 0 0 0 0 0 

0 0 0 0 0   0   0 0 0 0 0 0 

0 0 0 0 0  32   0 0 0 0 0 0 
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Problem 4: how to represent doubled signs? Solution: new, secondary matrix columns will have to 
be introduced for signs that can be doubled. (One of the matrix column pairs has to be appointed 
as the primary column so that the sign identifier will be inserted into the primary one, if the relevant 
sign is not doubled.) 
 

 
 
Problem 5: at which cell should a contact bow be represented? Solution: in order to have 
information about both body parts touching each other, two ends of a contact bow will have to be 
represented with two identifiers in the matrix. (More precisely, the left and the right end will be 
identified with different integers to distinguish them.) 
 

 
 

Problem 6: how to represent signs that have no time value, just modify the meaning of other signs? 
Idea (not developed solution): if an auxiliary sign does not have a standard place in Labanotation, 
and therefore its cell is not fixed, a matrix transformation should be performed: the identifiers of 
the auxiliary signs will be ’projected down’ to the row of the identifier of its main sign. (E.g. a pin 
beside a direction sign will be represented at the start of the direction sign.) 
 

 
 

 

 
 
 
 
 
 
 
Remark: ticks and measure lines can be represented as imaginary identifiers in a matrix column, for 
measure line relation searches. For symmetric searches, not only the symmetrical pairs of matrix 
columns, but the symmetrical pairs of sign identifiers have to be stored as well. 
 
  

        ,   32 27 

  0 0 0 0 0   0   0 0   0   0  0 514 

  0 0 0 0 0   0   0 0   0   0  0   0 

… 0 0 0 0 0   0 … 0 0   0   0  0   0 … 

  0 0 0 0 0   0   0 0   0   0  0   0 

  0 0 0 0 0 300   0 0 161 161 14   0 

  0 0 0 0  0   0 998  0 527 0 0 0 0 

  0 0 0 0  0   0   0  0   0 0 0 0 0 

  0 0 0 0  0   0   0  0   0 0 0 0 0 

  0 0 0 0  0   0   0  0   0 0 0 0 0 

… 0 0 0 0  0 532 997 27   0 0 0 0 0 … 

  0 0 0 0  0   0   0  0   0 0 0 0 0 

  0 0 0 0  0   0   0  0   0 0 0 0 0 

  0 0 0 0  0   0   0  0   0 0 0 0 0 

  0 0 0 0 32   0 998  0   0 0 0 0 0 

 

  0 0 0   0   0 532 0 0      0 0  0 512 

  0 0 0   0   0   0 0 0      0 0  0   0 

… 0 0 0   0 … 0   0 0 0 …    0 0  0   0 … 

  0 0 0   0   0   0 0 0      0 0  0   0 

  0 0 0 139  23   0 0 0   -139 0 12   0 

  0 0  0 0 0     0 523 0 0   0 0 0 0 0 

  0 0  0 0 0     0   0 0 0   0 0 0 0 0 

… 0 0 94 0 0  …  0   0 0 0 … 0 0 0 0 0 … 

  0 0  0 0 0     0   0 0 0   0 0 0 0 0 

  0 0  0 0 0    23   0 0 0   0 0 0 0 0 

  0 0  0 0 0     0 523 0 0   0 0 0 0 0 

  0 0  0 0 0     0   0 0 0   0 0 0 0 0 

… 0 0  0 0 0  …  0   0 0 0 … 0 0 0 0 0 … 

  0 0 94 0 0     0   0 0 0   0 0 0 0 0 

  0 0  0 0 0    23   0 0 0   0 0 0 0 0 

  0 0  0 0 0     0 523 0 0   0 0 0 0 0 

  0 0  0 0 0     0   0 0 0   0 0 0 0 0 

… 0 0  0 0 0  …  0   0 0 0 … 0 0 0 0 0 … 

  0 0  0 0 0     0   0 0 0   0 0 0 0 0 

  0 0 94 0 0    23   0 0 0   0 0 0 0 0 
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As the representation becomes more elaborate, the number of matrix columns increases quite 
rapidly. Nevertheless, it is worth representing signs separately, sign category by sign category. 
Notating a turn in support columns is a good example. Since it is indicated with a complex sign that 
has two graphical components, a rotation sign and a pin, and these are represented in different 
matrix columns, it is possible to search for the direction or the degree of the turn separately. 
Additionally, having matrix columns that belong to sign categories allows searches with wildcard 
signs (Misi, 2002): the identifier of a wildcard sign will be inserted into the matrix column that 
belongs to the sign category in question. 
The representation that was improved during the development of Labanatory is a matrix containing 
166 columns. 26 sign categories were defined8. One identifier is stored in the case of 14 sign 
categories, two identifiers are stored for 9 categories where the signs can be stretched (because of 
sign-start and sign-end), two identifiers are stored for 2 categories (hooks and dynamics signs) 
where the signs can be doubled, and four identifiers are stored for 1 category (the contact bows, 

which can also be doubled). This is 14+9⋅2+2⋅2+1⋅4=40 different matrix column types. 17 
discretizing cells were defined horizontally on the basis of staff columns9, and therefore a matrix 

should contain 40⋅17=680 columns. There is no need for 680 columns, since certain signs are never 
placed in certain staff columns, and given signs can be placed in only one of a given group of 
neighboring columns. Insertion rules describe how to insert sign identifiers into a matrix 
representing a staff10, and the 17 staff columns are mapped to 166 (instead of 680) matrix columns 
under these rules. 
The Labanatory software creates the matrices from digitized scores on the basis of sign data (Fügedi, 
1999) and the grid size set by the user, then performs the requested search by sliding and matching 
the matrices. 
This figure shows the relevant matrix columns in the search of the example discussed above. 
 
Searching 

 

              
 
  in 

                      

   0   0  0    0  0 532 998  0   0 0    0  0   0 

   0   0  0    0  0   0   0  0   0 0    0  0   0 

…  0   0  0 …  0  0   0   0  0   0 0 …  0  0   0 … 

   0   0  0    0  0   0   0  0   0 0    0  0   0 

   0   0 46    0 32   0 998  0   0 0    0  0   0 

   0   0  0    0  0 532 998  0   0 0    0  0 522 

   0   0  0    0  0   0   0  0   0 0    0  0   0 

   0   0  0    0  0   0   0  0   0 0    0  0   0  

   0   0  0    0  0   0   0  0   0 0    0  0   0 

   0   0  0    0  0   0 997  0   0 0    0  0   0 

   0   0  0    0  0   0   0  0   0 0   46 22   0 

   0   0  0    0  0   0   0  0   0 0    0  0   0   

   0   0  0    0  0   0   0  0   0 0    0  0   0 

   0 512 46    0 32   0 998  0 527 0    0  0   0 

   0   0  0    0  0   0   0  0   0 0    0  0   0 

  12   0 46    0  0   0   0  0   0 0    0  0   0   

   0   0  0    0  0   0   0  0   0 0    0  0   0 

…  0   0  0 …  0  0 532 997 27   0 0 … 46  0 512 … 

   0   0  0    0  0   0   0  0   0 0    0  0   0 

   0   0  0    0  0   0   0  0   0 0   46 12   0   

   0   0  0    0  0   0   0  0   0 0    0  0   0 

   0   0 46   52 32   0 998  0 523 0    0  0   0 

   0   0  0    0  0   0   0  0   0 0    0  0   0 

   0   0  0    0  0   0   0  0   0 0    0  0   0   

   0   0  0    0  0   0   0  0   0 0    0  0   0 

   0   0  0    0  0   0 997 23   0 0    0  0   0 

   0   0  0    0  0 532   0  0   0 0    0  0   0 

   0   0  0    0  0   0   0  0   0 0    0  0   0   

   0   0  0    0  0   0   0  0   0 0    0  0   0 

   0   0 46    0 32   0 998  0   0 0    0  0   0 
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Other operations 

 
The matrix representation can also be used for operations other than searches. Intersection and 
subtraction of Laban-patterns11 can be created by examining matrix cells rather than 2D 
coordinates, in a method that approaches the syntactic level. The next figure is an example for an 
intersection (common parts of kinetograms); the operation is performed with the matrices at right12. 
 
Creating the intersection of 
 

                        
 

  and 

               
 
The result is 

 

             
 
Additionally, the matrix representation can serve as the basis for methods of multivariate statistics 
and data mining that can reveal hidden relationships between elements of the notated dance. 
 

 
Results 

 
This paper described a representation of Labanotation that allows operations between kinetograms 
at a quasi-syntactic level, above the graphic level. This level is not purely syntactic, because whether 
the operations work on the syntactic level depends on how coordinates are discretized (on the 
selected grid size) and how matrices are transformed before the operations (see problem 6). 
One may ask whether the user should really have such an in-depth knowledge of software 
representation when he simply wants to perform a search and expects hits from the computer. The 
answer is yes: the user can only use a complex system effectively if he has an understanding of the 
background processes. This is true in the case of searches in relational databases or in Internet 
contents. These systems – just as Labanotation – are more complex than the text search mentioned 
in the Introduction. 
 
The matrix representation shown in this paper is not the only possible representation of 
Labanotation. It has no great importance in itself. It is more important that the paper defined 
matches on kinetograms, and described general requirements of searches (and other operations) for 
Labanotation systems in the future. The exact description of these requirements is necessary in 
order to meet the needs of Labanotation users. 
 

   0   0  0   0    0 532 998  0   0 0    0  0 512 

   0   0  0   0    0   0   0  0   0 0    0  0   0 

…  0   0  0   0 …  0   0   0  0   0 0 … 46 12   0 … 

   0   0  0   0    0   0   0  0   0 0    0  0   0 

   0   0 47   0   32   0 998  0   0 0    0  0   0 

   0   0  0   0    0 532 998  0   0 0    0  0 512 

   0   0  0   0    0   0   0  0   0 0    0  0   0 

…  0   0  0   0 …  0   0   0  0   0 0 … 46 12   0 … 

   0   0  0   0    0   0   0  0   0 0    0  0   0 

   0   0 46 153   32   0 998  0   0 0    0  0   0 

   0   0  0   0    0 532 998  0   0 0    0  0 512 

   0   0  0   0    0   0   0  0   0 0    0  0   0 

…  0   0  0   0 …  0   0   0  0   0 0 … 46 12   0 … 

   0   0  0   0    0   0   0  0   0 0    0  0   0 

   0   0  0   0   32   0 998  0   0 0    0  0   0 
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Notes 

 
1
 With mathematical description:  
Let C be the set of characters (lowercase, uppercase letters, digits, punctuation marks and space).  

Let anx1T=(a1, ..., an) and bmx1
T=(b1, ..., bm) be two character row vectors, ai, bj ∈C (1≤i≤n, 1≤j≤m, i, j, n, m∈N), n≤m. 

Let f:C→N be an invertible character coding function. Coding the elements of the vectors above ci=f(ai), dj=f(bj), 
and now cnx1T=(c1, ..., cn) and dmx1

T=(d1, ..., dm) vectors can be examined. 
 
2
 Continuing the previous note, anx1T occurs in bmx1

T is said, if ∃ k∈N0 that ∀i (1≤i≤n): bi+k=ai.  

Similarly, cnx1T vector occurs in dmx1
T is said, if ∃ k∈N0 that ∀i (1≤i≤n): ci+k=di.  

It is provable that cnx1T occurs in dmx1
T, if and only if anx1T occurs in bmx1

T. 
 
3
 As a mathematical structure: Let J be the set of Labanotation signs, I ⊂J the set of the graphically stretchable signs. 

A Laban-pattern is defined as a finite set of (ordered) quadruples: L⊂{(j, x, y, h)|j∈J, x, y, h∈R, h=0, if j∈J\I}. 
 
4
 Let L1 and L2 be two Laban-patterns. Definitions: 

L1 exactly matches L2 is said, if L1⊆L2, that is if 

∀ l1=(j1, x1, y1, h1) ∈L1 ∃ l2=(j2, x2, y2, h2) ∈L2: j1= j2, x1= x2, y1= y2, h1= h2. 
L1 sign-length tolerantly matches L2 is said, if 

∀ l1=(j1, x1, y1, h1) ∈L1 ∃ l2=(j2, x2, y2, h2) ∈L2: j1= j2, x1= x2, y1= y2. 
L1 symmetrically matches L2 is said, if 

L1sz matches L2, where L1sz is from L1 with transformation (j, x, y, h)→(j, –x, y, h) on its elements. 
L1 augmentedly matches L2 is said, if 

L1a matches L2, where L1a is from L1 with transformation (j, x, y, h)→(j, 2x, y, 2h) on its elements. 
L1 occurs in L2 is said, if 

∃ t∈R that L1t matches L2, where L1t is from L1 with transformation (j, x, y, h)→(j, x, y+t, h) on its elements. 
 
5
 Retaining the above indications, let f: J→N be a Labanotation sign coding invertible function. 

Let r∈N, t1, t2, ..., tr∈R and d∈R be given constants as parameters for discretization. 
The matrix representation of the Laban-pattern L is calculated as follows: g(L)=Mnxm=(ckl), where ckl= 

= f(j), if ∃ (j, x, y, h)∈L: tl≤x<tl+1, d⋅(n-k)≤y<d⋅(n-k+1). 

= f(j)+z, z∈N is a fixed constant, z>|J|, if ∃ (j, x, y, h)∈L: j∈I, tl≤x<tl+1, d⋅(n-k)≤y+h<d⋅(n-k+1). 
= 0 else. 
 
6
 Let L1, L2 be two Laban-patterns (|L1|≤|L2|), their matrix representation: g(L1)=Anxk=(aij), g(L2)=Bmxk=(bij). 

Definition: Anxk occurs in Bmxk is said, if ∃ l∈N0 that ∀i,j: b(i+l)j=aij, if aij≠0. 
 
7
 The target is to define g( ) so that g( ) should be a function where the next statement is true: 
Anxk occurs in Bmxk, if and only if L1 occurs in L2. 
 
8
 Enumerating in C programming language: 
 
enum ESrchSignCategories {SRCH_CATG_NO_LEVEL_DIRECTION, SRCH_CATG_DIRECTION,          SRCH_CATG_SPACE_MEASUREMENT, 

        SRCH_CATG_B_PINS,             SRCH_CATG_T_PINS,             SRCH_CATG_W_PINS,  

        SRCH_CATG_RETENTION,          SRCH_CATG_CANCELLATION,       SRCH_CATG_BOW_CARETS,  

        SRCH_CATG_BOW_INCLUSION,      SRCH_CATG_BOW_VERTICALS_LEFT, SRCH_CATG_BOW_VERTICALS_RIGHT, 

        SRCH_CATG_WAVES,              SRCH_CATG_TIME_EX,            SRCH_CATG_STROKE_TAIL,  

        SRCH_CATG_DYNAMICS,           SRCH_CATG_HOOKS,              SRCH_CATG_CONTACT,  

        SRCH_CATG_CONTACT_BOW_HUN_P,  SRCH_CATG_TORSO,              SRCH_CATG_JOINTS,  

        SRCH_CATG_ROTATION,           SRCH_CATG_PATH_STRAIGHT,      SRCH_CATG_PATH_CIRCULAR, 

        SRCH_CATG_FACING,             SRCH_CATG_TOOLS}; 

 
9
 
enum ESrchStaffColumns {SRCH_STAFF_COL__LEFT_OUTER_OTHER, SRCH_STAFF_COL__LEFT_FOREARM,     SRCH_STAFF_COL__LEFT_ARM, 

      SRCH_STAFF_COL__LEFT_OUTER_AUX,   SRCH_STAFF_COL__LEFT_TRUNK_PART,  SRCH_STAFF_COL__LEFT_LEG_GESTURE,

      SRCH_STAFF_COL__LEFT_INNER_AUX,   SRCH_STAFF_COL__LEFT_SUPPORT,     SRCH_STAFF_COL___SUPPORT_LINE,

      SRCH_STAFF_COL_RIGHT_SUPPORT,     SRCH_STAFF_COL_RIGHT_INNER_AUX,   SRCH_STAFF_COL_RIGHT_LEG_GESTURE,

      SRCH_STAFF_COL_RIGHT_TRUNK_PART,  SRCH_STAFF_COL_RIGHT_OUTER_AUX,   SRCH_STAFF_COL_RIGHT_ARM, 

      SRCH_STAFF_COL_RIGHT_FOREARM,     SRCH_STAFF_COL_RIGHT_OUTER_OTHER}; 
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10
 The insertion rules for space measurements, direction signs and hooks are listed here: 

 

static SSrchInsertionRule a_st_rules[]= 

/*  

{ sign_category,  

      {{ sign_id_type, x_coord_inside_sign,  

                            { 

                             {staff_column, matrix_column,  

                                            second_matrix_column}, 

                             ... 

                            }, y_coord_inside_sign } 

       ... 

      }}, 

*/ 

{SRCH_CATG_SPACE_MEASUREMENT, 

      {{ SRCH_INS_ID,  0.5, { 

                             {SRCH_STAFF_COL__LEFT_OUTER_OTHER, SRCE_MATRIX_COL__LEFT_OTHER_X}, 

                             {SRCH_STAFF_COL__LEFT_FOREARM,     SRCE_MATRIX_COL__LEFT_ARM_X}, 

                             {SRCH_STAFF_COL__LEFT_ARM,         SRCE_MATRIX_COL__LEFT_ARM_X}, 

                             {SRCH_STAFF_COL__LEFT_OUTER_AUX,   SRCE_MATRIX_COL__LEFT_ARM_X}, 

                             {SRCH_STAFF_COL__LEFT_TRUNK_PART,  SRCE_MATRIX_COL__LEFT_TRUNK_X}, 

                             {SRCH_STAFF_COL__LEFT_LEG_GESTURE, SRCE_MATRIX_COL__LEFT_LEG_GESTURE_X}, 

                             {SRCH_STAFF_COL__LEFT_INNER_AUX,   SRCE_MATRIX_COL__LEFT_LEG_GESTURE_X}, 

                             {SRCH_STAFF_COL__LEFT_SUPPORT,     SRCE_MATRIX_COL__LEFT_LEG_SUPPORT_X}, 

                             {SRCH_STAFF_COL_RIGHT_SUPPORT,     SRCE_MATRIX_COL_RIGHT_LEG_SUPPORT_X}, 

                             {SRCH_STAFF_COL_RIGHT_INNER_AUX,   SRCE_MATRIX_COL_RIGHT_LEG_GESTURE_X}, 

                             {SRCH_STAFF_COL_RIGHT_LEG_GESTURE, SRCE_MATRIX_COL_RIGHT_LEG_GESTURE_X}, 

                             {SRCH_STAFF_COL_RIGHT_TRUNK_PART,  SRCE_MATRIX_COL_RIGHT_TRUNK_X}, 

                             {SRCH_STAFF_COL_RIGHT_OUTER_AUX,   SRCE_MATRIX_COL_RIGHT_ARM_X}, 

                             {SRCH_STAFF_COL_RIGHT_ARM,         SRCE_MATRIX_COL_RIGHT_ARM_X}, 

                             {SRCH_STAFF_COL_RIGHT_FOREARM,     SRCE_MATRIX_COL_RIGHT_ARM_X}, 

                             {SRCH_STAFF_COL_RIGHT_OUTER_OTHER, SRCE_MATRIX_COL_RIGHT_OTHER_X}, 

                            }, 0.01 }}}, 

{SRCH_CATG_DIRECTION, 

      {{ SRCH_INS_ID,  0.5, { 

                             {SRCH_STAFF_COL__LEFT_OUTER_OTHER, SRCE_MATRIX_COL__LEFT_OTHER_DIRECTION}, 

                             {SRCH_STAFF_COL__LEFT_FOREARM,     SRCE_MATRIX_COL__LEFT_ARM_GESTURE_FORE}, 

                             {SRCH_STAFF_COL__LEFT_ARM,         SRCE_MATRIX_COL__LEFT_ARM_GESTURE}, 

                             {SRCH_STAFF_COL__LEFT_TRUNK_PART,  SRCE_MATRIX_COL__LEFT_TRUNK_DIRECTION}, 

                             {SRCH_STAFF_COL__LEFT_LEG_GESTURE, SRCE_MATRIX_COL__LEFT_LEG_GESTURE}, 

                             {SRCH_STAFF_COL__LEFT_INNER_AUX,   SRCE_MATRIX_COL__LEFT_LEG_GESTURE_LOW}, 

                             {SRCH_STAFF_COL__LEFT_SUPPORT,     SRCE_MATRIX_COL__LEFT_LEG_SUPPORT}, 

                             {SRCH_STAFF_COL___SUPPORT_LINE,    SRCE_MATRIX_COL___ANY_ADLIB}, 

                             {SRCH_STAFF_COL_RIGHT_SUPPORT,     SRCE_MATRIX_COL_RIGHT_LEG_SUPPORT}, 

                             {SRCH_STAFF_COL_RIGHT_INNER_AUX,   SRCE_MATRIX_COL_RIGHT_LEG_GESTURE_LOW}, 

                             {SRCH_STAFF_COL_RIGHT_LEG_GESTURE, SRCE_MATRIX_COL_RIGHT_LEG_GESTURE}, 

                             {SRCH_STAFF_COL_RIGHT_TRUNK_PART,  SRCE_MATRIX_COL_RIGHT_TRUNK_DIRECTION}, 

                             {SRCH_STAFF_COL_RIGHT_ARM,         SRCE_MATRIX_COL_RIGHT_ARM_GESTURE}, 

                             {SRCH_STAFF_COL_RIGHT_FOREARM,     SRCE_MATRIX_COL_RIGHT_ARM_GESTURE_FORE}, 

                             {SRCH_STAFF_COL_RIGHT_OUTER_OTHER, SRCE_MATRIX_COL_RIGHT_OTHER_DIRECTION}, 

                            }, 0.01 }, 

       { SRCH_INS_END, 0.5, { 

                             {SRCH_STAFF_COL__LEFT_OUTER_OTHER, SRCE_MATRIX_COL__LEFT_OTHER_DIRECTION_END}, 

                             {SRCH_STAFF_COL__LEFT_FOREARM,     SRCE_MATRIX_COL__LEFT_ARM_GESTURE_FORE_END}, 

                             {SRCH_STAFF_COL__LEFT_ARM,         SRCE_MATRIX_COL__LEFT_ARM_GESTURE_END}, 

                             {SRCH_STAFF_COL__LEFT_TRUNK_PART,  SRCE_MATRIX_COL__LEFT_TRUNK_DIRECTION_END}, 

                             {SRCH_STAFF_COL__LEFT_LEG_GESTURE, SRCE_MATRIX_COL__LEFT_LEG_GESTURE_END}, 

                             {SRCH_STAFF_COL__LEFT_INNER_AUX,   SRCE_MATRIX_COL__LEFT_LEG_GESTURE_LOW_END}, 

                             {SRCH_STAFF_COL__LEFT_SUPPORT,     SRCE_MATRIX_COL__LEFT_LEG_SUPPORT_END}, 

                             {SRCH_STAFF_COL___SUPPORT_LINE,    SRCE_MATRIX_COL___ANY_ADLIB_END}, 

                             {SRCH_STAFF_COL_RIGHT_SUPPORT,     SRCE_MATRIX_COL_RIGHT_LEG_SUPPORT_END}, 

                             {SRCH_STAFF_COL_RIGHT_INNER_AUX,   SRCE_MATRIX_COL_RIGHT_LEG_GESTURE_LOW_END}, 

                             {SRCH_STAFF_COL_RIGHT_LEG_GESTURE, SRCE_MATRIX_COL_RIGHT_LEG_GESTURE_END}, 

                             {SRCH_STAFF_COL_RIGHT_TRUNK_PART,  SRCE_MATRIX_COL_RIGHT_TRUNK_DIRECTION_END}, 

                             {SRCH_STAFF_COL_RIGHT_ARM,         SRCE_MATRIX_COL_RIGHT_ARM_GESTURE_END}, 

                             {SRCH_STAFF_COL_RIGHT_FOREARM,     SRCE_MATRIX_COL_RIGHT_ARM_GESTURE_FORE_END}, 

                             {SRCH_STAFF_COL_RIGHT_OUTER_OTHER, SRCE_MATRIX_COL_RIGHT_OTHER_DIRECTION_END}, 

                            }, 1 }}}, 

{SRCH_CATG_HOOKS, 

      {{ SRCH_INS_ID,  0.5, { 

                             {SRCH_STAFF_COL__LEFT_LEG_GESTURE, SRCE_MATRIX_COL__LEFT_SOLE, 

                                                                SRCE_MATRIX_COL__LEFT_SOLE_2ND}, 

                             {SRCH_STAFF_COL__LEFT_INNER_AUX,   SRCE_MATRIX_COL__LEFT_SOLE, 

                                                                SRCE_MATRIX_COL__LEFT_SOLE_2ND}, 

                             {SRCH_STAFF_COL__LEFT_SUPPORT,     SRCE_MATRIX_COL__LEFT_SOLE, 

                                                                SRCE_MATRIX_COL__LEFT_SOLE_2ND}, 

                             {SRCH_STAFF_COL_RIGHT_SUPPORT,     SRCE_MATRIX_COL_RIGHT_SOLE, 

                                                                SRCE_MATRIX_COL_RIGHT_SOLE_2ND}, 

                             {SRCH_STAFF_COL_RIGHT_INNER_AUX,   SRCE_MATRIX_COL_RIGHT_SOLE, 

                                                                SRCE_MATRIX_COL_RIGHT_SOLE_2ND}, 

                             {SRCH_STAFF_COL_RIGHT_LEG_GESTURE, SRCE_MATRIX_COL_RIGHT_SOLE, 

                                                                SRCE_MATRIX_COL_RIGHT_SOLE_2ND}, 

                            }, 0.5 }}}, 

/* 

... 

*/ 

}; 

 

11
 Size, intersection and subtraction of Laban-patterns are defined as set operations (|L|, L1\L2, L1∩L2). 

 

12
 Let Anxm=(aij) and Bnxm=(bij) be two matrices, aij , bij ∈ N0 (n, m, i, j∈N, 1≤i≤n, 1≤j≤m). 

Projected intersection of Anxm and Bnxm is Cnxm=(cij), where ∀i,j: cij= 

=aij, if aij=bij. 

=0, if aij≠bij. 
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